NAOC Open IR

Browse/Search Results:  1-10 of 27 Help

Selected(0)Clear Items/Page:    Sort:
Flare Index Prediction with Machine Learning Algorithms 期刊论文
SOLAR PHYSICS, 2021, 卷号: 296, 期号: 10, 页码: 17
Authors:  Chen, Anqin;  Ye, Qian;  Wang, Jingxiu
Favorite  |  View/Download:7/0  |  Submit date:2021/12/06
Active regions  magnetic fields  Flares  Forecasting  Machine learning  
A survey on machine learning based light curve analysis for variable astronomical sources 期刊论文
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 页码: 25
Authors:  Yu, Ce;  Li, Kun;  Zhang, Yanxia;  Xiao, Jian;  Cui, Chenzhou;  Tao, Yihan;  Tang, Shanjiang;  Sun, Chao;  Bi, Chongke
Favorite  |  View/Download:6/0  |  Submit date:2021/12/06
deep learning  light curve analysis  machine learning  variable  
Open clusters identifying by multi-scale density feature learning 期刊论文
ASTROPHYSICS AND SPACE SCIENCE, 2021, 卷号: 366, 期号: 2, 页码: 11
Authors:  Xiang, Yaobing;  Xi, Jiangbo;  Shao, Zhengyi;  Wang, Min;  Yang, Yun
Favorite  |  View/Download:5/0  |  Submit date:2021/12/06
Open cluster  Multi-scale  Kernel density estimation  Machine learning  
Open clusters identifying by multi-scale density feature learning 期刊论文
ASTROPHYSICS AND SPACE SCIENCE, 2021, 卷号: 366, 期号: 2, 页码: 11
Authors:  Xiang, Yaobing;  Xi, Jiangbo;  Shao, Zhengyi;  Wang, Min;  Yang, Yun
Favorite  |  View/Download:7/0  |  Submit date:2021/12/06
Open cluster  Multi-scale  Kernel density estimation  Machine learning  
Open clusters identifying by multi-scale density feature learning 期刊论文
ASTROPHYSICS AND SPACE SCIENCE, 2021, 卷号: 366, 期号: 2, 页码: 11
Authors:  Xiang, Yaobing;  Xi, Jiangbo;  Shao, Zhengyi;  Wang, Min;  Yang, Yun
Favorite  |  View/Download:4/0  |  Submit date:2021/12/06
Open cluster  Multi-scale  Kernel density estimation  Machine learning  
A data-driven shale gas production forecasting method based on the multi-objective random forest regression 期刊论文
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 卷号: 196, 页码: 13
Authors:  Xue, Liang;  Liu, Yuetian;  Xiong, Yifei;  Liu, Yanli;  Cui, Xuehui;  Lei, Gang
Favorite  |  View/Download:3/0  |  Submit date:2021/12/06
Shale gas  Production forecasting  Machine learning  Random forest  
A data-driven shale gas production forecasting method based on the multi-objective random forest regression 期刊论文
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 卷号: 196, 页码: 13
Authors:  Xue, Liang;  Liu, Yuetian;  Xiong, Yifei;  Liu, Yanli;  Cui, Xuehui;  Lei, Gang
Favorite  |  View/Download:3/0  |  Submit date:2021/12/06
Shale gas  Production forecasting  Machine learning  Random forest  
A data-driven shale gas production forecasting method based on the multi-objective random forest regression 期刊论文
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 卷号: 196, 页码: 13
Authors:  Xue, Liang;  Liu, Yuetian;  Xiong, Yifei;  Liu, Yanli;  Cui, Xuehui;  Lei, Gang
Favorite  |  View/Download:4/0  |  Submit date:2021/12/06
Shale gas  Production forecasting  Machine learning  Random forest  
Twenty-First-Century Statistical and Computational Challenges in Astrophysics 期刊论文
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 8, 2021, 2021, 卷号: 8, 页码: 493-517
Authors:  Feigelson, Eric D.;  de Souza, Rafael S.;  Ishida, Emille E. O.;  Babu, Gutti Jogesh
Favorite  |  View/Download:7/0  |  Submit date:2021/12/06
astronomy  astrophysics  astrostatistics  cosmology  galaxies  stars  exoplanets  gravitational waves  Bayesian inference  likelihood-free modeling  signal detection  periodic time series  machine learning  measurement errors  
Twenty-First-Century Statistical and Computational Challenges in Astrophysics 期刊论文
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 8, 2021, 2021, 卷号: 8, 页码: 493-517
Authors:  Feigelson, Eric D.;  de Souza, Rafael S.;  Ishida, Emille E. O.;  Babu, Gutti Jogesh
Favorite  |  View/Download:6/0  |  Submit date:2021/12/06
astronomy  astrophysics  astrostatistics  cosmology  galaxies  stars  exoplanets  gravitational waves  Bayesian inference  likelihood-free modeling  signal detection  periodic time series  machine learning  measurement errors