NAOC Open IR  > 太阳物理研究部
Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity
Zhang, Ling1; Yin, Jian-qin2,3; Lin, Jia-ben3; Feng, Zhi-quan1; Zhou, Jin1
2017-07-01
发表期刊SOLAR PHYSICS
卷号292期号:7
摘要Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.
文章类型Article
关键词Coronal Mass Ejections Initiation And Propagation Corona Models
WOS标题词Science & Technology ; Physical Sciences
资助者National Natural Science Foundation of China(61203341 ; National Natural Science Foundation of China(61203341 ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Foundation of University of Jinan(XKY1513) ; Foundation of University of Jinan(XKY1513) ; 61375084 ; 61375084 ; 61640218 ; 61640218 ; 61472163 ; 61472163 ; 61673192) ; 61673192) ; National Natural Science Foundation of China(61203341 ; National Natural Science Foundation of China(61203341 ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Foundation of University of Jinan(XKY1513) ; Foundation of University of Jinan(XKY1513) ; 61375084 ; 61375084 ; 61640218 ; 61640218 ; 61472163 ; 61472163 ; 61673192) ; 61673192)
DOI10.1007/s11207-017-1107-2
关键词[WOS]EXTREME LEARNING-MACHINE ; AUTOMATIC DETECTION ; TRACKING ; CLASSIFICATION ; IMAGES ; EARTH
收录类别SCI
语种英语
资助者National Natural Science Foundation of China(61203341 ; National Natural Science Foundation of China(61203341 ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Foundation of University of Jinan(XKY1513) ; Foundation of University of Jinan(XKY1513) ; 61375084 ; 61375084 ; 61640218 ; 61640218 ; 61472163 ; 61472163 ; 61673192) ; 61673192) ; National Natural Science Foundation of China(61203341 ; National Natural Science Foundation of China(61203341 ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Fund for Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Project of Shandong Province Higher Educational Science and Technology Program(J16LN07) ; Foundation of University of Jinan(XKY1513) ; Foundation of University of Jinan(XKY1513) ; 61375084 ; 61375084 ; 61640218 ; 61640218 ; 61472163 ; 61472163 ; 61673192) ; 61673192)
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
WOS记录号WOS:000406304300009
引用统计
文献类型期刊论文
条目标识符http://ir.bao.ac.cn/handle/114a11/8878
专题太阳物理研究部
作者单位1.Univ Jinan, Sch Informat Sci & Engn, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Shandong, Peoples R China
2.Beijing Univ Posts & Telecommun, Automat Sch, Beijing 100876, Peoples R China
3.Chinese Acad Sci, Key Lab Solar Act, Beijing 100012, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Ling,Yin, Jian-qin,Lin, Jia-ben,et al. Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity[J]. SOLAR PHYSICS,2017,292(7).
APA Zhang, Ling,Yin, Jian-qin,Lin, Jia-ben,Feng, Zhi-quan,&Zhou, Jin.(2017).Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity.SOLAR PHYSICS,292(7).
MLA Zhang, Ling,et al."Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity".SOLAR PHYSICS 292.7(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Ling]的文章
[Yin, Jian-qin]的文章
[Lin, Jia-ben]的文章
百度学术
百度学术中相似的文章
[Zhang, Ling]的文章
[Yin, Jian-qin]的文章
[Lin, Jia-ben]的文章
必应学术
必应学术中相似的文章
[Zhang, Ling]的文章
[Yin, Jian-qin]的文章
[Lin, Jia-ben]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。