NAOC Open IR  > 星系宇宙学研究部
Theoretical accuracy in cosmological growth estimation
Bose, Benjamin1; Koyama, Kazuya1; Hellwing, Wojciech A.1,2; Zhao, Gong-Bo1,3; Winther, Hans A.1
2017-07-18
Source PublicationPHYSICAL REVIEW D
Volume96Issue:2
AbstractWe elucidate the importance of the consistent treatment of gravity-model specific nonlinearities when estimating the growth of cosmological structures from redshift space distortions (RSD). Within the context of standard perturbation theory (SPT), we compare the predictions of two theoretical templates with redshift space data from COLA (comoving Lagrangian acceleration) simulations in the normal branch of DGP gravity (nDGP) and general relativity (GR). Using COLA for these comparisons is validated using a suite of full N-body simulations for the same theories. The two theoretical templates correspond to the standard general relativistic perturbation equations and those same equations modeled within nDGP. Gravitational clustering nonlinear effects are accounted for by modeling the power spectrum up to one-loop order and redshift space clustering anisotropy is modeled using the Taruya, Nishimichi and Saito (TNS) RSD model. Using this approach, we attempt to recover the simulation's fiducial logarithmic growth parameter f. By assigning the simulation data with errors representing an idealized survey with a volume of 10 Gpc(3)/ h(3), we find the GR template is unable to recover fiducial f to within 1 sigma at z = 1 when we match the data up to k(max) = 0.195h/Mpc. On the other hand, the DGP template recovers the fiducial value within 1s. Further, we conduct the same analysis for sets of mock data generated for generalized models of modified gravity using SPT, where again we analyze the GR template's ability to recover the fiducial value. We find that for models with enhanced gravitational nonlinearity, the theoretical bias of the GR template becomes significant for stage IV surveys. Thus, we show that for the future large data volume galaxy surveys, the self-consistent modeling of non-GR gravity scenarios will be crucial in constraining theory parameters.
SubtypeArticle
WOS HeadingsScience & Technology ; Physical Sciences
Funding OrganizationUniversity of Portsmouth ; University of Portsmouth ; European Research Council(646702) ; European Research Council(646702) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; Polish National Science Center(UMO-2012/07/D/ST9/02785) ; Polish National Science Center(UMO-2012/07/D/ST9/02785) ; University of Portsmouth ; University of Portsmouth ; European Research Council(646702) ; European Research Council(646702) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; Polish National Science Center(UMO-2012/07/D/ST9/02785) ; Polish National Science Center(UMO-2012/07/D/ST9/02785)
DOI10.1103/PhysRevD.96.023519
WOS KeywordMATTER POWER SPECTRUM ; REDSHIFT-SPACE DISTORTIONS ; LARGE-SCALE STRUCTURE ; CLUSTERING WEDGES ; MODIFIED GRAVITY ; F(R) GRAVITY ; PERTURBATION-THEORY ; CONSTANT PROBLEM ; FULL SHAPE ; REAL-SPACE
Indexed BySCI
Language英语
Funding OrganizationUniversity of Portsmouth ; University of Portsmouth ; European Research Council(646702) ; European Research Council(646702) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; Polish National Science Center(UMO-2012/07/D/ST9/02785) ; Polish National Science Center(UMO-2012/07/D/ST9/02785) ; University of Portsmouth ; University of Portsmouth ; European Research Council(646702) ; European Research Council(646702) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; UK Science and Technologies Facilities Council(ST/N000668/1) ; Polish National Science Center(UMO-2012/07/D/ST9/02785) ; Polish National Science Center(UMO-2012/07/D/ST9/02785)
WOS Research AreaAstronomy & Astrophysics ; Physics
WOS SubjectAstronomy & Astrophysics ; Physics, Particles & Fields
WOS IDWOS:000405712900002
Citation statistics
Cited Times:10[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.bao.ac.cn/handle/114a11/8871
Collection星系宇宙学研究部
Affiliation1.Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
2.Univ Zielona Gora, Janusz Gil Inst Astron, Ul Szafrana 2, PL-65516 Zielona Gora, Poland
3.Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
Recommended Citation
GB/T 7714
Bose, Benjamin,Koyama, Kazuya,Hellwing, Wojciech A.,et al. Theoretical accuracy in cosmological growth estimation[J]. PHYSICAL REVIEW D,2017,96(2).
APA Bose, Benjamin,Koyama, Kazuya,Hellwing, Wojciech A.,Zhao, Gong-Bo,&Winther, Hans A..(2017).Theoretical accuracy in cosmological growth estimation.PHYSICAL REVIEW D,96(2).
MLA Bose, Benjamin,et al."Theoretical accuracy in cosmological growth estimation".PHYSICAL REVIEW D 96.2(2017).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Bose, Benjamin]'s Articles
[Koyama, Kazuya]'s Articles
[Hellwing, Wojciech A.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Bose, Benjamin]'s Articles
[Koyama, Kazuya]'s Articles
[Hellwing, Wojciech A.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Bose, Benjamin]'s Articles
[Koyama, Kazuya]'s Articles
[Hellwing, Wojciech A.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.