NAOC Open IR  > 太阳物理研究部
Coronal Mass Ejections detection using multiple features based ensemble learning
Yin, Jianqin1,2; Yao, Hai2; Lin, Jiaben3; Yin, Yilong4; Zhang, Ling2; Liu, Xiaoli2; Feng, Zhiquan2; Wang, Xiaofan3
2017-06-28
发表期刊NEUROCOMPUTING
卷号244页码:123-130
摘要Coronal Mass Ejection (CME) is a major solar activity that affects the earth, thus CMEs detection is of great importance for space weather forecast, disaster prevention and reduction. We model the detection of Coronal Mass Ejections (CMEs) as the classification of the brightest block in the current running difference image. Because CMEs usually correspond to the areas with high gray values or complex texture features, multiple features including gray features and texture features are extracted to represent the brightest block. And classifier is designed based on these features. Our method includes four steps: first, because the CMEs spread along the radial direction of the sun, in order to facilitate the analysis, the original coordinate is transformed into the polar coordinate; Secondly, because the typical appearance of the CMEs is bright or complex texture enhancement, we use the brightest block to represent the whole image; Thirdly, we extract the gray, texture and HOG features of the brightest gray blocks. Finally, we use the extracted features to design decision trees as the base classifiers, and AdaBoost is used to obtain the final ensemble classifier. As far as we know, this is the first time that the learning based classification framework is presented in the CMEs detection. Moreover, multiple feature fusion is first used to model the various CMEs. Experimental results show that the integration of multi-feature based detection algorithm proposed can achieve better detection results. (C) 2017 Elsevier B.V. All rights reserved.
文章类型Article
关键词Coronal Mass Ejections Detection Multiple Features Fusion Ensemble Learning
WOS标题词Science & Technology ; Technology
资助者National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China Joint Fund ; National Natural Science Foundation of China Joint Fund ; Guangdong Key Project(U1201258) ; Guangdong Key Project(U1201258) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; 61472163 ; 61472163 ; 61573219) ; 61573219) ; National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China Joint Fund ; National Natural Science Foundation of China Joint Fund ; Guangdong Key Project(U1201258) ; Guangdong Key Project(U1201258) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; 61472163 ; 61472163 ; 61573219) ; 61573219)
DOI10.1016/j.neucom.2017.03.030
关键词[WOS]AUTOMATIC DETECTION ; TRACKING ; CMES ; CLASSIFICATION ; CATALOG
收录类别SCI
语种英语
资助者National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China Joint Fund ; National Natural Science Foundation of China Joint Fund ; Guangdong Key Project(U1201258) ; Guangdong Key Project(U1201258) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; 61472163 ; 61472163 ; 61573219) ; 61573219) ; National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China(61673192 ; National Natural Science Foundation of China Joint Fund ; National Natural Science Foundation of China Joint Fund ; Guangdong Key Project(U1201258) ; Guangdong Key Project(U1201258) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; Outstanding Youth of Shandong Provincial High School(ZR2016JL023) ; 61472163 ; 61472163 ; 61573219) ; 61573219)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000400040100012
引用统计
文献类型期刊论文
条目标识符http://ir.bao.ac.cn/handle/114a11/8857
专题太阳物理研究部
作者单位1.Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China
2.Univ Jinan, Sch Informat Sci & Engn, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Peoples R China
3.Chinese Acad Sci, Key Lab Solar Act, Beijing 100012, Peoples R China
4.Shandong Univ, Sch Comp Sci & Technol, Jinan 250002, Peoples R China
推荐引用方式
GB/T 7714
Yin, Jianqin,Yao, Hai,Lin, Jiaben,et al. Coronal Mass Ejections detection using multiple features based ensemble learning[J]. NEUROCOMPUTING,2017,244:123-130.
APA Yin, Jianqin.,Yao, Hai.,Lin, Jiaben.,Yin, Yilong.,Zhang, Ling.,...&Wang, Xiaofan.(2017).Coronal Mass Ejections detection using multiple features based ensemble learning.NEUROCOMPUTING,244,123-130.
MLA Yin, Jianqin,et al."Coronal Mass Ejections detection using multiple features based ensemble learning".NEUROCOMPUTING 244(2017):123-130.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yin, Jianqin]的文章
[Yao, Hai]的文章
[Lin, Jiaben]的文章
百度学术
百度学术中相似的文章
[Yin, Jianqin]的文章
[Yao, Hai]的文章
[Lin, Jiaben]的文章
必应学术
必应学术中相似的文章
[Yin, Jianqin]的文章
[Yao, Hai]的文章
[Lin, Jiaben]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。