NAOC Open IR  > 光学天文研究部
An Automated Stellar Spectra Classification System Basing on Non-Parameter Regression and Adaboost
Liu Rong1; Qiao Xue-jun2; Zhang Jian-nan3; Duan Fu-qing4
2017-05-01
发表期刊SPECTROSCOPY AND SPECTRAL ANALYSIS
卷号37期号:5页码:1555-1559
摘要With the analysis of stellar spectra, the evolution and structure of the Milky Way galaxy is studied. Spectral classification is one of the basic tasks of stellar spectral analysis. In this paper, a method of MK classification based on non parametric regression and Adaboost for stellar spectra is proposed, and the stars are classified according to the luminosity type, spectral type as well as the spectral subtype. The spectral type of the stellar spectrum and its sub type represent the effective temperature of the star, while the luminosity type represents the luminous intensity of the star. In the same spectral type, the luminosity type reflects the variation of the shape details of the spectral line, so the classification of the photometric type must be based on the spectral type classification. The spectral type classification is transformed as a regression problem of class label, and the type and subtype of the stellar spectra are recognized with non parametric regression method. The luminosity type of the stellar spectra is recognized using Adaboost method which combines a group of K nearest neighbor classifiers. Adaboost generates a strong classifier with weighted combination of a group of weak classifiers to improve the recognition rate of the luminosity type. Experimental results validate the proposed method. The accuracy of spectral subtype recognition is up to 0. 22, and the correct rate of the luminosity type classification is 84% above. Two KNN methods are compared with Adaboost method on luminosity recognition. The results show that the recognition rate can be greatly enhanced with the Adaboost method and using KNN.
文章类型Article
关键词Spectra Classification Adaboost Non-parameter Regression Luminosity
WOS标题词Science & Technology ; Technology
DOI10.3964/j.issn.1000-0593(2017)05-1553-05
关键词[WOS]ATMOSPHERIC PARAMETERS ; STARS
收录类别SCI
语种英语
WOS研究方向Spectroscopy
WOS类目Spectroscopy
WOS记录号WOS:000401880000040
引用统计
文献类型期刊论文
条目标识符http://ir.bao.ac.cn/handle/114a11/8786
专题光学天文研究部
作者单位1.Beijing Inst Fash Technol, Base Dept, Beijing 100029, Peoples R China
2.Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
3.Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
4.Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
推荐引用方式
GB/T 7714
Liu Rong,Qiao Xue-jun,Zhang Jian-nan,et al. An Automated Stellar Spectra Classification System Basing on Non-Parameter Regression and Adaboost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS,2017,37(5):1555-1559.
APA Liu Rong,Qiao Xue-jun,Zhang Jian-nan,&Duan Fu-qing.(2017).An Automated Stellar Spectra Classification System Basing on Non-Parameter Regression and Adaboost.SPECTROSCOPY AND SPECTRAL ANALYSIS,37(5),1555-1559.
MLA Liu Rong,et al."An Automated Stellar Spectra Classification System Basing on Non-Parameter Regression and Adaboost".SPECTROSCOPY AND SPECTRAL ANALYSIS 37.5(2017):1555-1559.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu Rong]的文章
[Qiao Xue-jun]的文章
[Zhang Jian-nan]的文章
百度学术
百度学术中相似的文章
[Liu Rong]的文章
[Qiao Xue-jun]的文章
[Zhang Jian-nan]的文章
必应学术
必应学术中相似的文章
[Liu Rong]的文章
[Qiao Xue-jun]的文章
[Zhang Jian-nan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。