NAOC Open IR  > 光学天文研究部
Kernel Regression Application in Estimating Stellar Fundamental Parameters
Zhang Jian-nan1; Wu Fu-chao2; Luo A-li1
2009-04-01
发表期刊SPECTROSCOPY AND SPECTRAL ANALYSIS
卷号29期号:4页码:1131-1136
摘要The three fundamental parameters of stellar atmosphere, i. e. the effective temperature, the surface gravity, and the metallic, determine the continuum and spectral lines in the stellar spectrum. With the development of the modern telescopes such as SDSS, LAMOST projects, the great voluminous spectra demand to explore automatic celestial spectral analysis methods. It is most significant for Galaxy research to develop automatic methods determining the fundamental parameters from stellar spectra data. Two non-linear regression algorithms, kernel least squared regression (KLSR) and kernel PCA regression (KPCR), are proposed for estimating the three parameters in the present paper. The linear regression models, LSR and PCR, are extended to non-linear regression by using a kernel function for the stellar parameter estimation from spectra. Extensive experiments on low resolution spectra data show: (1) KLSR and KPCR methods realize the regression from spectrum to the effective temperature and gravity. KLSR is sensitive to the noise while KPCR is robust than the former. (2) For the effective temperature estimation, the two algorithms perform similarly; and for the gravity and metallic estimation, the KPCR is superior to the KLSR and the NPR(Non-parameter regression); (3) KLSR and KPCR methods are simple and efficient for the stellar spectral parameter estimation.
关键词Stellar Spectra Stellar Fundamental Parameters Kernel Pca Regression (Kpcr) Kernel Least Squares Regression (Klsr)
DOI10.3964/j.issn.1000-0593(2009)04-1131-06
收录类别SCI
语种英语
WOS记录号WOS:000264829600060
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.bao.ac.cn/handle/114a11/7962
专题光学天文研究部
作者单位1.Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zhang Jian-nan,Wu Fu-chao,Luo A-li. Kernel Regression Application in Estimating Stellar Fundamental Parameters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS,2009,29(4):1131-1136.
APA Zhang Jian-nan,Wu Fu-chao,&Luo A-li.(2009).Kernel Regression Application in Estimating Stellar Fundamental Parameters.SPECTROSCOPY AND SPECTRAL ANALYSIS,29(4),1131-1136.
MLA Zhang Jian-nan,et al."Kernel Regression Application in Estimating Stellar Fundamental Parameters".SPECTROSCOPY AND SPECTRAL ANALYSIS 29.4(2009):1131-1136.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang Jian-nan]的文章
[Wu Fu-chao]的文章
[Luo A-li]的文章
百度学术
百度学术中相似的文章
[Zhang Jian-nan]的文章
[Wu Fu-chao]的文章
[Luo A-li]的文章
必应学术
必应学术中相似的文章
[Zhang Jian-nan]的文章
[Wu Fu-chao]的文章
[Luo A-li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。