NAOC Open IR  > 光学天文研究部
Kernel Regression Application in Estimating Stellar Fundamental Parameters
Zhang Jian-nan1; Wu Fu-chao2; Luo A-li1
AbstractThe three fundamental parameters of stellar atmosphere, i. e. the effective temperature, the surface gravity, and the metallic, determine the continuum and spectral lines in the stellar spectrum. With the development of the modern telescopes such as SDSS, LAMOST projects, the great voluminous spectra demand to explore automatic celestial spectral analysis methods. It is most significant for Galaxy research to develop automatic methods determining the fundamental parameters from stellar spectra data. Two non-linear regression algorithms, kernel least squared regression (KLSR) and kernel PCA regression (KPCR), are proposed for estimating the three parameters in the present paper. The linear regression models, LSR and PCR, are extended to non-linear regression by using a kernel function for the stellar parameter estimation from spectra. Extensive experiments on low resolution spectra data show: (1) KLSR and KPCR methods realize the regression from spectrum to the effective temperature and gravity. KLSR is sensitive to the noise while KPCR is robust than the former. (2) For the effective temperature estimation, the two algorithms perform similarly; and for the gravity and metallic estimation, the KPCR is superior to the KLSR and the NPR(Non-parameter regression); (3) KLSR and KPCR methods are simple and efficient for the stellar spectral parameter estimation.
KeywordStellar Spectra Stellar Fundamental Parameters Kernel Pca Regression (Kpcr) Kernel Least Squares Regression (Klsr)
Indexed BySCI
WOS IDWOS:000264829600060
Citation statistics
Cited Times:3[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Affiliation1.Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
Recommended Citation
GB/T 7714
Zhang Jian-nan,Wu Fu-chao,Luo A-li. Kernel Regression Application in Estimating Stellar Fundamental Parameters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS,2009,29(4):1131-1136.
APA Zhang Jian-nan,Wu Fu-chao,&Luo A-li.(2009).Kernel Regression Application in Estimating Stellar Fundamental Parameters.SPECTROSCOPY AND SPECTRAL ANALYSIS,29(4),1131-1136.
MLA Zhang Jian-nan,et al."Kernel Regression Application in Estimating Stellar Fundamental Parameters".SPECTROSCOPY AND SPECTRAL ANALYSIS 29.4(2009):1131-1136.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Zhang Jian-nan]'s Articles
[Wu Fu-chao]'s Articles
[Luo A-li]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhang Jian-nan]'s Articles
[Wu Fu-chao]'s Articles
[Luo A-li]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhang Jian-nan]'s Articles
[Wu Fu-chao]'s Articles
[Luo A-li]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.