KMS National Astronomical Observatories, CAS
Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm | |
Cheng, Na1; Song, Shuli2; Li, Wei2 | |
2021-02-01 | |
Source Publication | ATMOSPHERE
![]() |
Volume | 12Issue:2Pages:17 |
Abstract | The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick's Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward. |
Keyword | ionospheric anomalies monitoring CMONOC 3D ROTI multi-scale storm |
Funding Organization | National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province ; National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province ; National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province ; National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province |
DOI | 10.3390/atmos12020215 |
Language | 英语 |
Funding Project | National Key R&D Program of China[2016YFB0501503-3] ; key project of the National Natural Science Fund[41730109] ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province |
Funding Organization | National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province ; National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province ; National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province ; National Key R&D Program of China ; National Key R&D Program of China ; key project of the National Natural Science Fund ; key project of the National Natural Science Fund ; Doctoral Research Fund of Shandong Jianzhu University ; Doctoral Research Fund of Shandong Jianzhu University ; Introduction & Training Program of Young Creative Talents of Shandong Province ; Introduction & Training Program of Young Creative Talents of Shandong Province |
WOS Research Area | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS Subject | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS ID | WOS:000622122000001 |
Publisher | MDPI |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.bao.ac.cn/handle/114a11/79233 |
Collection | 中国科学院国家天文台 |
Corresponding Author | Song, Shuli |
Affiliation | 1.Shandong Jianzhu Univ, Coll Surveying & Geoinformat, Jinan 250101, Peoples R China 2.Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China |
Recommended Citation GB/T 7714 | Cheng, Na,Song, Shuli,Li, Wei. Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm[J]. ATMOSPHERE,2021,12(2):17. |
APA | Cheng, Na,Song, Shuli,&Li, Wei.(2021).Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm.ATMOSPHERE,12(2),17. |
MLA | Cheng, Na,et al."Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm".ATMOSPHERE 12.2(2021):17. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment