Wu Xiaoshu1; Cui Jun2; Yu Jiang3; Liu Lijuan2; Zhou Zhenjun2
Source Publicationearthandplanetaryphysics
AbstractPhotoelectrons are produced by solar Extreme Ultraviolet radiation and contribute significantly to the local ionization and heat balances in planetary upper atmospheres. When the effect of transport is negligible, the photoelectron energy distribution is controlled by a balance between local production and loss, a condition usually referred to as local energy degradation. In this study, we examine such a condition for photoelectrons near Mars, with the aid of a multi-instrument Mars Atmosphere and Volatile Evolution data set gathered over the inbound portions of a representative dayside MAVEN orbit. Various photoelectron production and loss processes considered here include primary and secondary ionization, inelastic collisions with atmospheric neutrals associated with both excitation and ionization, as well as Coulomb collisions with ionospheric thermal electrons. Our calculations indicate that photoelectron production occurs mainly via primary ionization and degradation from higher energy states during inelastic collisions; photoelectron loss appears to occur almost exclusively via degradation towards lower energy states via inelastic collisions above 10 eV, but the effect of Coulomb collisions becomes important at lower energies. Over the energy range of 30–55 eV (chosen to reduce the influence of the uncertainty in spacecraft charging), we find that the condition of local energy degradation is very well satisfied for dayside photoelectrons from 160 to 250 km. No evidence of photoelectron transport is present over this energy range.
Document Type期刊论文
First Author AffilicationNational Astronomical Observatories, Chinese Academy of Sciences
Recommended Citation
GB/T 7714
Wu Xiaoshu,Cui Jun,Yu Jiang,et al. photoelectronbalanceinthedaysidemartianupperatmosphere[J]. earthandplanetaryphysics,2019,3(5):373.
APA Wu Xiaoshu,Cui Jun,Yu Jiang,Liu Lijuan,&Zhou Zhenjun.(2019).photoelectronbalanceinthedaysidemartianupperatmosphere.earthandplanetaryphysics,3(5),373.
MLA Wu Xiaoshu,et al."photoelectronbalanceinthedaysidemartianupperatmosphere".earthandplanetaryphysics 3.5(2019):373.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Wu Xiaoshu]'s Articles
[Cui Jun]'s Articles
[Yu Jiang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wu Xiaoshu]'s Articles
[Cui Jun]'s Articles
[Yu Jiang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wu Xiaoshu]'s Articles
[Cui Jun]'s Articles
[Yu Jiang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.