NAOC Open IR  > 太阳物理研究部
Multi-Task Rank Learning for Image Quality Assessment
Xu, Long1; Li, Jia2,3; Lin, Weisi4; Zhang, Yongbing5; Ma, Lin6; Fang, Yuming7; Yan, Yihua1
2017-09-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
卷号27期号:9页码:1833-1843
摘要In practice, images are distorted by more than one distortion. For image quality assessment (IQA), existing machine learning (ML)-based methods generally establish a unified model for all the distortion types, or each model is trained independently for each distortion type, which is therefore distortion aware. In distortion-aware methods, the common features among different distortions are not exploited. In addition, there are fewer training samples for each model training task, which may result in overfitting. To address these problems, we propose a multi-task learning framework to train multiple IQA models together, where each model is for each distortion type; however, all the training samples are associated with each model training task. Thus, the common features among different distortion types and the said underlying relatedness among all the learning tasks are exploited, which would benefit the generalization ability of trained models and prevent overfitting possibly. In addition, pairwise image quality ranking instead of image quality rating is optimized in our learning task, which is fundamentally departed from traditional ML-based IQA methods toward better performance. The experimental results confirm that the proposed multi-task rank-learning-based IQA metric is prominent against all state-of-the-art nonreference IQA approaches.
文章类型Article
关键词Image Quality Assessment (Iqa) Machine Learning (Ml) Mean Opinion Score (Mos) Pairwise Comparison Rank Learning
WOS标题词Science & Technology ; Technology
资助者National Natural Science Foundation (NSFC) of China(61202242 ; National Natural Science Foundation (NSFC) of China(61202242 ; CAS ; CAS ; National Natural Science Foundation of China(61370113 ; National Natural Science Foundation of China(61370113 ; 61572461) ; 61572461) ; U1201255 ; U1201255 ; U1301257 ; U1301257 ; 61571212 ; 61571212 ; 11433006) ; 11433006) ; National Natural Science Foundation (NSFC) of China(61202242 ; National Natural Science Foundation (NSFC) of China(61202242 ; CAS ; CAS ; National Natural Science Foundation of China(61370113 ; National Natural Science Foundation of China(61370113 ; 61572461) ; 61572461) ; U1201255 ; U1201255 ; U1301257 ; U1301257 ; 61571212 ; 61571212 ; 11433006) ; 11433006)
DOI10.1109/TCSVT.2016.2543099
关键词[WOS]VISUAL SALIENCY ESTIMATION ; NATURAL SCENE STATISTICS ; ALGORITHMS ; REGRESSION ; FRAMEWORK ; JPEG2000 ; DOMAIN
收录类别SCI
语种英语
资助者National Natural Science Foundation (NSFC) of China(61202242 ; National Natural Science Foundation (NSFC) of China(61202242 ; CAS ; CAS ; National Natural Science Foundation of China(61370113 ; National Natural Science Foundation of China(61370113 ; 61572461) ; 61572461) ; U1201255 ; U1201255 ; U1301257 ; U1301257 ; 61571212 ; 61571212 ; 11433006) ; 11433006) ; National Natural Science Foundation (NSFC) of China(61202242 ; National Natural Science Foundation (NSFC) of China(61202242 ; CAS ; CAS ; National Natural Science Foundation of China(61370113 ; National Natural Science Foundation of China(61370113 ; 61572461) ; 61572461) ; U1201255 ; U1201255 ; U1301257 ; U1301257 ; 61571212 ; 61571212 ; 11433006) ; 11433006)
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000409531400001
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.bao.ac.cn/handle/114a11/20087
专题太阳物理研究部
作者单位1.Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing 100012, Peoples R China
2.Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
3.Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
4.Nanyang Technol Univ, Dept Comp Engn, Singapore 639798, Singapore
5.Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518005, Peoples R China
6.Huawei Noahs Ark Lab, Hong Kong, Hong Kong, Peoples R China
7.Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China
推荐引用方式
GB/T 7714
Xu, Long,Li, Jia,Lin, Weisi,et al. Multi-Task Rank Learning for Image Quality Assessment[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2017,27(9):1833-1843.
APA Xu, Long.,Li, Jia.,Lin, Weisi.,Zhang, Yongbing.,Ma, Lin.,...&Yan, Yihua.(2017).Multi-Task Rank Learning for Image Quality Assessment.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,27(9),1833-1843.
MLA Xu, Long,et al."Multi-Task Rank Learning for Image Quality Assessment".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 27.9(2017):1833-1843.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Long]的文章
[Li, Jia]的文章
[Lin, Weisi]的文章
百度学术
百度学术中相似的文章
[Xu, Long]的文章
[Li, Jia]的文章
[Lin, Weisi]的文章
必应学术
必应学术中相似的文章
[Xu, Long]的文章
[Li, Jia]的文章
[Lin, Weisi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。